
@lisacrispin

Intro to Continuous Delivery and DevOps
From a testing perspective

Lisa Crispin
With material from Abby Bangser, Ashley Hunsberger, Lisi Hocke & more

It takes a village…

@lisacrispin

A little about me...

Testing advocate with

@lisacrispin

Learning intentions
● Ways to engage the whole team in a DevOps (DevTestOps) culture
● Some tools to help shorten feedback loops & mitigate risks
● How to fit all necessary testing activities into the continuous world

@lisacrispin

Expectations

● There are no “best practices”, there
are “leading practices”.

● Read more, and experiment with
these ideas to really learn them.

● DevOps is a big area. Today I’ll focus
on terminology and deploy pipelines.

@lisacrispin

What do you think when you hear “DevOps”?

How about “Continuous Delivery”?

@lisacrispin

What do you think when you hear “Continuous testing”?

@lisacrispin

Whole team responsibility for quality

● Commitment to a level of confidence
○ Bug prevention over bug detection
○ Learning from production use, errors
○ …and responding fast
○ Focus on what’s valuable to customers

● Diverse perspectives, skill sets, biases

@lisacrispin

Let’s agree on some common terminology

@lisacrispin

“DevOps”

● Term coined in 2009, but the concept goes back to
early days

● Devs, testers, ops, others collaborate
○ Create, test, maintain infrastructure for CI,

deployments, test & prod environments
○ Support continuous delivery & testing
○ Make our customers’ day a bit better

@lisacrispin

It’s all about:

● Collaboration

● Continuous improvement

● Continuous learning

Testing is the bridge between
development, operations and
the business stakeholders - the
heart of DevOps

@lisacrispin

Measuring our flow of work

Work
identified

Work
started

Work
completed

Lead Time

Process / Cycle Time

Cycle time: how long from start to delivery?
● Re-work slows us down
● Shared understanding speeds us up

@lisacrispin

Continuous Integration

● Integrate code into a shared repository multiple times per
day

● Preferably on trunk/master, but on branches too

● Typically the start of a pipeline

● Each check-in can be verified by an automated build with
automated regression tests

@lisacrispin

From A Practical Guide to Testing
in DevOps, Katrina Clokie

Deployment pipeline
● Break the build into stages to speed up feedback
● Each stage takes extra time & provides more confidence
● Early stages can find most problems -> faster feedback
● Later stages probe more thoroughly
● Automated deployment pipelines are central to continuous delivery

@lisacrispin

Continuous Delivery (CD)

● Ability to get many types of changes into production
safely, quickly and sustainably (Jez Humble)
○ eg. new features, configuration changes, bug fixes, experiments

● Heavily benefits from, but not dependent on,
automated regression tests

● Each commit is independently verified as a deployable
release candidate

● A deployable release candidate is always available

@lisacrispin

Compile &
Unit
Testing

Static
Analysis

Integration
Testing

GUI &
End to End
Testing

Exploratory
Testing

User
Acceptance
Testing
(UAT)

Perf
Testing

Penetration
Testing

Deploy to
Production

Deploy to
QA Env

Deploy to
Staging
Env

Deploy to
Stress Env

Deploy to
Security
Env

Continuous Delivery Example

Steps outlined in blue in
this example are manual

@lisacrispin

● Deploys
● Exploratory testing
● Visual checking
● … what else can you think of?
● More on this later

Manual steps in the pipeline might be…

@lisacrispin

Principles of continuous delivery
From Jez Humble and David Farley,
continuousdelivery.com:

● Build quality in
● Work in small batches
● Computers perform repetitive tasks,

people solve problems
● Relentlessly pursue continuous

improvement
● Everyone is responsible

@lisacrispin

Continuous Deployment (also CD :-/)

● Deployments occur on every
successfully verified commit.
Often many a day.

● Heavily from automated
testing and Continuous
Delivery environment, but does
not actually require either

Image: www.squirrelpicnic.com

http://www.squirrelpicnic.com

@lisacrispin

Compile &
Unit Testing

Static
Analysis

Integration
Testing

GUI &
End to End
Testing

Exploratory
Testing

User
Acceptance
Testing
(UAT)

Perf
Testing

Penetration
Testing

Deploy to
Production

Deploy to
QA Env

Deploy to
Staging
Env

Deploy to
Stress Env

Deploy to
Security
Env

Continuous Deployment Example

Steps outlined in blue in
this example are manual

@lisacrispin

CD (either one) without automation…

Like driving at night without
your headlights. It’s
possible… but headlights
greatly reduce the risk!

Testing is one headlight,
Monitoring is the other

Props to Ashley Hunsberger for the analogy

@lisacrispin

To sum up the terms again…

(Thanks to Abby Bangser for the following visual)

@lisacrispin

Developer
Commit

Deployed
to
Production

Stage Stage Stage Stage Stage Stage

Deployment Pipeline

@lisacrispin

Code is
merged
(master/trunk)

Developer
Commit

Deployed
to
Production

Stage Stage Stage Stage Stage

Deployment Pipeline

@lisacrispin

Business
approval

Compilation/
unit testing

Create
deployment
artifact

Testing
stage 1

Testing
stage 2

Continuous Integration (CI)

Continuous Delivery (CD)

Deployment Pipeline

Code is
merged
(master/trunk)

Developer
Commit

Deployed
to
Production

@lisacrispin
Continuous Deployment

(confusingly, this is also CD)

Deployment Pipeline

Continuous Delivery (CD)

Continuous Integration (CI)

Business
approval

Compilation/
unit testing

Create
deployment
artifact

Testing
stage 1

Testing
stage 2

Code is
merged
(master/trunk)

Developer
Commit

Deployed
to
Production

@lisacrispin

Visualize your pipeline
● Try getting a cross-functional group of team members together

● Devs, testers, product folks, ops
● Write your pipeline steps on big stickies (real or virtual)
● Arrange them on a table, wall, virtual whiteboard
● Talk about it!

See https://www.mabl.com/blog/path-to-production-what-we-can-learn-from-our-deployment-pipelines

@lisacrispin

How could you deliver faster?

● Parallelizing steps?

● New tools? More
automation? Moving to
the cloud?

● What regression tests
do you need to run for
confidence?

@lisacrispin

The Test Suite Canvas (from Ashley Hunsberger, inspired by Katrina Clokie)

https://github.com/ahunsberger/TestSuiteDesign

https://github.com/ahunsberger/TestSuiteDesign

@lisacrispin

Let’s explore a few canvas discussion points

Con n e

@lisacrispin

A good place to start is…

do we do each step in our current pipeline?

@lisacrispin

What do we want to learn from each step?

What business questions can each step in our pipeline answer?

● Integration and build
● Static code analysis
● Automated test suites
● Manual testing

Who can benefit from the information?
How should they be informed?
What risks can we mitigate with each step?

@lisacrispin

A few real world examples…

API Test Suite
● Am I getting proper responses that warrant UI testing?

Static Code Analysis
● Are we meeting accessibility standards?

Build Installer Testing
● Does the build install without error so that it is worth further

testing?

@lisacrispin

Dependencies

What needs to be in place for a given step to run
successfully?

○ Other systems
○ Tools
○ Data, environments...

@lisacrispin

Constraints

● What’s preventing us from
optimizing a given step?

● For example: is it a manual step
we could automate?

● Do we have automation, but it’s
slow and flaky?

● What are our known
workarounds?

@lisacrispin

Triggering each step in your pipeline

• What kicks off each step in your
pipeline?

• Can you parallelize to shorten your
feedback loop?

• If one prerequisite step fails but
another passes – do you run the
shared next step? Or stop?

@lisacrispin

Gates
● Automatically stop defects

from making it any further
downstream – fast feedback

● Trust your tests – flaky tests
are useless

● Use new technology to help
make tests trustworthy

@lisacrispin

Test data

How do we manage test data?
● Tradeoff of speed vs. simulating production
● Unit tests use test doubles - fakes, stubs, mocks
● Higher level tests use fixture or canonical data

○ which simulates prod data
● Setup and teardown for each test

@lisacrispin

There’s more to the canvas

• Use it to generate conversations
• Make sure you address everything important to give

you confidence for continuous delivery

@lisacrispin

Building a DevOps Culture

DevOps isn’t a role or a team

It’s collaboration between the
software delivery team (including testers)
and the system administration and operations team

@lisacrispin

Building relationships

This whole team approach
sounds nice, but…
● How can we engage

others to collaborate?

What are your ideas?

@lisacrispin

We’re humans! (or possibly dragons, donkeys, unicorns…)

● Start with casual, friendly
conversations

● Do food
● Share something useful
● Ask people in other roles/teams to

participate, share their knowledge

Katrina Clokie has excellent tips in
A Practical Guide to Testing in DevOps

@lisacrispin

Cross-discipline pairing, mobbing

Picture from Mob Programming Guidebook, Maaret
Pyhäjärvi and Llewellyn Falco

@lisacrispin

“Stop the line” mentality - from Toyota

Every employee on the assembly line
has a responsibility to “stop the line”
when they see a defect

● Benefit of whole team approach
Pushing the “big red button” is an
investment that leads to improvements:

● Knowledge sharing
● Cost, speed
● Reliability

@lisacrispin

Learning from production use

@lisacrispin

Monitoring, observing

● Testing in production is a necessity
● Big data and the tools to instrument & monitor it are here
● AI, ML allow us to process the data
● Need ability to respond quickly to pain points
● Team discipline to respond to alerts
● Usage trends can inspire new features
● “Learning releases” aka “MVP”
● A/B, beta testing

@lisacrispin

● Your team needs to
master feature toggles!

● Dogfooding, canary
release, staged rollout,
dark launch

Exposure control

@lisacrispin

Fitting all the different types of testing into CD

● Exposure control, which lets you…

● ...release small changes frequently
- manage risk

● Developers exploratory test &
more at story level

● Testers pair & mob with devs,
designers, product people…

@lisacrispin

Keep testing visible to keep it continuous

● Stories for all types of testing at
feature/epic level go into the
backlog with feature stories
○ Exploratory test charters AND
○ A11y, I18n, security, reliability,

performance … stories go into the
backlog with feature stories

● Anyone can pick up a testing task

@lisacrispin

Take advantage of new technology

● Use your retrospectives, identify pain
points, roadblocks

● Small experiments with new
approaches & tools

● Production monitoring, observability

● There’s no silver bullet, but we can
continually improve

@lisacrispin

Important DevOps topics I’m not covering today

● Infrastructure as code
● Configuration management
● Containers
● Cloud
● Environment management
● Infrastructure testing
… See Continuous Delivery and A Practical Guide to Testing in DevOps

@lisacrispin

● Collaborating to continuously improve pipelines, feedback
● Whole team commitment, engagement
● Visualize together, experiment
● Baby steps - it’s a process
● Not “shifting left or right” – it’s infinite!

Succeeding with the whole team approach

@lisacrispin

Any questions?

What will you try with your own team?

@lisacrispin

A few resources
• Continuous Delivery: Reliable Software Releases Through Build, Test, and

Deployment Automation (Jez Humble and David Farley)

• A Practical Guide to Testing in DevOps (Katrina Clokie)

• “The Era of Intelligent Testing” (Dan Belcher)

https://www.mabl.com/blog/the-era-of-intelligent-testing

• “What is CI/CD” (Izzy Azeri) https://www.mabl.com/blog/what-is-cicd

• Accelerate: The Science of Lean Software and DevOps (Nicole Forsgren, Jez

Humble, Gene Kim)

• Test Suite Canvas (Ashley Hunsberger)

https://github.com/ahunsberger/TestSuiteDesign

• Charity Majors’ blog, monitoring & observability: https://charity.wtf/

https://www.mabl.com/blog/the-era-of-intelligent-testing
https://www.mabl.com/blog/what-is-cicd
https://github.com/ahunsberger/TestSuiteDesign
https://charity.wtf/

@lisacrispin

Try mabl!

https://mabl.com

